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Kink motion in a curved Josephson junction
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The propagation of the kink along the curved Josephson junction is considered. It is shown that the torsion
as well as curvature is responsible for the existence of the energy barrier that affects the motion of the fluxon
in the junction. It is also observed that the motion of the kink in the junction can be controlled in a very simple
way even in the straight junction by modulating its width.
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I. INTRODUCTION

The Josephson effect was first predicted by Josephson [1]
and then observed experimentally by Anderson and Rowell
[2]. The effect occurs in two superconductors separated by a
very thin layer of insulator or normal metal, in which the
current is carried across the tunneling barrier by Cooper
pairs. Although the Josephson junction is a two-dimensional
system, if the transverse dimension is smaller than the Jo-
sephson length, then the system can be considered as the
one-dimensional (1-d) system called the long Josephson
junction. The dynamics of the phase difference between the
two superconducting electrodes ¢ in this system is described
by the sine-Gordon model [3]. The model appears in descrip-
tion of many systems [4]. The solutions of this model in 1
+1 dimensions have been extensively studied for many years
(see, for example, [5]). Moreover, investigations on solutions
of this model in a higher number of dimensions also have a
long history (see, for instance, [6]). The best-known example
of the solution of this model is the kink solution interpolating
between various ground states of the potential. In the theory
of Josephson junction the kink represents a fluxon, i.e., a
quantum of magnetic flux.

The recent progress in microtechnology made it possible
to fabricate various low-dimensional systems with compli-
cated geometry. In particular, one can produce the Josephson
junction with an almost arbitrary shape. The question about
the influence of the nontrivial geometry on the kink motion
was first raised in [7]. The authors proposed an effective
description of the long Josephson junction in a particular
case when the junction is represented by a curve embedded
in a plane. The aim of the present paper is to implement a
formalism that makes it possible to describe the influence of
the nontrivial geometry of the Josephson junction on the kink
motion in the case of an arbitrarily deformed long Josephson
junction and also in the case of a large-area Josephson junc-
tion. In the case of the long Josephson junction, which is a
one-dimensional system, we describe the effects of its em-
bedding [in a three-dimensional (3-d) space] on the kink mo-
tion. Using the same formalism, we are also able to describe
similar effects in the case of the large-area Josephson junc-
tion, which is a two-dimensional system. In two dimensions,
the proposed formalism works well, if the junction is flat in
one of the normal directions. In both cases, i.e., one and two
dimensional, we focus our studies on considerations of the
kink dynamics in the Josephson junction whose width is
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much smaller than its length. In the paper, we use normalized
units (7,x'). The space coordinates are normalized to the Jo-
sephson length A},

X' =X\,
and the time is normalized as follows:
1= wPT,

where wp is plasma frequency. Here (7',X’) are usual Carte-
sian coordinates. We also neglect the quasiparticle current
and assume a zero external bias current and absence of the
external magnetic field.

The paper is organized as follows. In Sec. II, we introduce
certain curved coordinates on the basis of the junction and
fix our notation. Section III is devoted to the construction of
an effective Lagrangian. The effective Lagrangian defines
the dynamics of the variable that describes the time depen-
dence of the position of the kink. The main advantage of the
proposed formalism is the possibility of describing the influ-
ence of an arbitrary deformation of the junction (i.e., the
central line of the junction) on the kink motion. Section IV
contains remarks.

II. PRELIMINARIES ON THE EMBEDDING OF THE
JOSEPHSON LINE

We should like to consider the sine-Gordon model defined
by the Lagrangian density

= 90,0 V(9. m

where 7, is Minkowski metric in Cartesian coordinates x*
=(x0x", %2, x%)=(t,x,y,2), ie., i =diag(+1,-1,-1,-1);
here we consider the potential V(¢)=1-cos ¢. The equation
of motion is the following:

B dp—Ap+sin ¢p=0. ()

In the case of the straight and long Josephson junction, equa-
tion of motion (2) possesses static solution

d(x,t) = 4 arctan(e”), (3)

which can be easily generalized to stationary kink solution.
Our purpose in this paper is consideration of the influence of
the curvature and the torsion of the junction on the kink
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FIG. 1. The coordinate s parametrizes the points of the central
line of the junction. The normal variable p indicates the positions of
the points at the insulator plane, and u is a variable which indicates
a position in the direction perpendicular to the insulator (or normal-
metal) plane.

motion. In order to realize this purpose we separate the space
and the time variables in the Lagrangian density of the
model,

£=—(a¢)2 fa(w V(¢g), (4)

where 7 1s Euchdean metric diag(+1,+1,+1) in Cartesian
coordlnates ) =(x",2%,x3%).

In description of the curved Josephson junction we use
suitable curved coordinates. One coordinate, denoted by s, is
arc-length coordinate located in the central line of the junc-
tion, the second u is the transversal coordinate orthogonal to
s, and the last coordinate p is orthogonal to s and u (see Fig.
1). The Lagrangian density in these coordinates is the follow-

ing:
1 2 1 af
= 5(8@5) - EG (9az9ﬁd)— V(e), (5)

where we use the notation &¥=(&,&,8)=(p',p%.s)
=(u,p,s). We treat the junction as a one-dimensional object
and therefore we can identify its points by the vector field

X(s). At this point we would like to underline that our pro-
posed formalism makes possible also the description of the
two-dimensional junction in case of the junction that is flat in
the direction of the normal variable p.

In the neighborhood of the Josephson line, we introduce
the curved coordinates (£%)=(p',s),

= X(s) + pliif(s), (6)

where the vectors 7; are normal to the line of the ]unctlon
and p/ are coordlnates in the directions of the vectors n The
above formula establishes implicit connection between the
Cartesian coordinates x' and curved coordinates (p ,s). By
definition the vectors ﬁj are normalized to unity and are or-

thogonal each other and to the tangent vector X ;=d.X to the
central line of the junction,
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fl)}’—l) 511, ﬁjX‘SZO, (7)
where the scalar products are calculated with respect to Eu-
clidean metric (+, +,+) in Cartesian coordinates. In the arc-

length parametrization the tangent vector has unit length

XX, =1. (8)

Three vectors X ;, n;, and 1, form the Frenet frame (see Fig.
1). The typical choice of the normals, i.e., the normal vector
n, and the binormal vector 1,, is the following:

. X R
ny= _),SS B ny =X,s X np. (9)
X o

The embedding of the line in 3-d space is described by the
extrinsic curvature K and the torsion coefficient @ and they
follow from the Frenet-Serret formulas,

(9XXJ=X’H=KI;I, (10)
ﬁsl’i)l:ﬁl’S:—K}z’s'F (.l)ﬁz, (11)
ity =1y = = Ny . (12)

From these equations we can calculate the curvature and the
torsion coefficients. From the square of the first Frenet-Serret
equation (10), we obtain the curvature coefficient

K= |)Ess| (13)

If we project the third Eq. (12) onto normal direction 7, and
then use the explicit form of the binormal vector 1, [Eq. (9)],
we obtain the torsion coefficient

w=—,d(X, X)) (14)

The normal vector 7, can be eliminated completely, from
the last formula, if we use the first Frenet-Serret equation and
explicit expression for curvature (13),

1 - - N
w=->_Xs(Xss><Xsss)~ (15)
X2, T

L85

An example of the flat curve, i.e., the curve located in the
plane, is a circle. In this case we have the following radius
vector:

X(s)=R cos(s/R)e, + R sin(s/R)e, + zpe,, (16)

where R is the radius of the circle and z specifies the plane
where the circle is located. The curvature and the torsion in
this example are the following:

1
==, w=0. (17)

The other example of the curve, which is not flat, is a
helix. The geometry of this curve is richer in this sense that
it possesses nonzero curvature and also nonzero torsion co-
efficient
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)Z(s) =R cos(Cs)e, + R sin(Cs)e, + hCse,, (18)

where R is the radius, & measures the slip of the helix, and
C=1/vyR*+h?. If we calculate the curvature and the torsion,
then we obtain

R h
KR TR (o)

In the calculus we shall need the metric in the curved coor-
dinates (&%) =(p',s),

ax ox £
== 20
ap E agﬁ 77ij ( )
The components of this metric are the following:
_ _ j _ 2 i
Gy=8; Gy=—weyp, Gy=(1-uK)’+ppo.
21)

In our computations we use the Lagrangian density in curved
coordinates and therefore we need the components of the
inverse metric in curved coordinates:

i = §i w’ ilgikpl ok s @ i 55 1
T=0'+ . = s = S
G e p'p e’p G
(22)
where

G=(1-ukK)? (23)

is the determinant of the space metric G,z in curved coordi-
nates.

II1. EFFECTIVE DESCRIPTION OF THE KINK MOTION
IN CURVED JOSEPHSON JUNCTION

First, we transform Lagrangian density (5) to the curved
coordinates. If we use formulas (22), then the Lagrangian
density can be converted to the form

1 ) ’ il _jk 1k
= E(5r¢) - 5(5i¢)(5i¢) Y (9;4)(9;)

@ iy LIPS
— & P 0d)0s¢) = S (0,4)" - V(). (24)

The effective Lagrangian which describes the motion of the
kink along the junction can be obtained by integration of
Lagrangian density (24) over the spatial variables,

1 +al2 +b/2 —
L:J dsf duf dp\VGL(P). (25)
0 -a2 -b2

The effective Lagrangian in a natural way separates into two
parts: kinetic and potential energies,

L=T-U. (26)

The kinetic energy is defined by the integral of the first
term of expression (24),
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FIG. 2. The function J(S), independent of the values of param-
eters, is equal to 2. The parameter / in the plot is equal to 1000.

l +al/2 +b/2 ’_1
7= f ds f du f G @b, @)
0

—al2 —-b/2

and the effective potential energy comes from the rest of
Lagrangian density (24). In this paper we consider two geo-
metrically different situations.

A. Case 1

In the first case the system is generically one dimensional,
i.e., due to the form of the kink profile [¢pg=di(t,s)], the
junction is or can be treated as a one-dimensional object. In
this case the kink is one- or quasi-one-dimensional solution
(9;¢px=0) and the Lagrangian density simplifies to the form

L= %(&rd’]()z - i(ﬂsd’]()z - V(y). (28)

The effective potential in this simple case is given by the
integral

! +al2 +b/2 1
-~ 2
U:J dsf duf dp\’G{—(de)K) + (1 —cos ¢g) |.

—al2 b2
(29)

An example of the kink configuration of this type has the
following analytical form:

¢ =4 arctan[* 5], (30)

Here S(7) is a variable which indicates the position of the
center of the kink. The effective Lagrangian describes the
dynamics of this variable. In particular the kinetic energy is
the following:

T=2abJ(S)S? =~ 4abS>. (31)

In the above formula we used approximation J(S)
=tanh(/-S)+tanh(S) =~ 2. The validity of this approximation
in the interval 0<S§< follows from Fig. 2. The potential
energy can be easily evaluated if we assume that the curva-
ture radius of the junction is larger than its width; i.e., for
K(s)<1/a,
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FIG. 3. The potential barrier in the first example is constant in
the region s € [s;,s,]. This picture is valid whenever 0<s;<s,
</. The parameters in the plot are the following: a=20, R=200,
b=100, [=1000, s,=700, and s;=400.

ba3fl K(s)?
U=8ab+— | ds————=8ab+AU. (32
b 6 J, Scoshz(s—S) awr (32)

This potential consists of some constant and the energy bar-
rier AU that fixes the dynamics of the kink. We consider two
examples of the curved junctions.

Example 1. In the first example the junction consists of
two straight segments K(s)=0 for s €[0,s,]U[s,,l] con-
nected by the arc of the circle of radius R, i.e., K(s)=1/R
=const for s € [s;,s,]. The energy barrier in this case has
extremely simple form (see Fig. 3),

ba’ sinh(s, — s,)

AU = — .
6R? cosh(S — s5;)cosh(s, — 5)

(33)

We have in mind that we used approximation which is valid
for R>a. The result obtained in this example has extensive
description in [7], where it was treated analytically and nu-
merically as well.

Example 2. In a generic situation curvature in a bent sec-
tion is not constant. In order to demonstrate the effect of the
changeable curvature on the shape of the barrier, we will
study a different example. Let us consider two straight seg-
ments K(s)=0 for s €[0,s;]U[s,,l] connected by the arc
with linearly growing curvature, i.e., K(s)=s/R=const, for
s €[s1,5,]. The energy barrier in this case has a linear slope
also (see Fig. 4),

ba® [ (cosh(S —-s1)
ol =222 AU

AU=—|1 tanh(S —
cosh(S—sz)>+sl anh($ - s1)

6R>
-8 tanh(S - Sz):| . (34)

This example suggests close correspondence between the
curvature of the junction and the shape of the potential bar-
rier.

B. Case 2

In the second case, due to explicit dependence of the kink
profile on the normal variable p [i.e., ¢x=dk(t,s,p)], the
system cannot be treated as one dimensional. Although the
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FIG. 4. The potential barrier in the second example, similar to
curvature, grows linearly. The parameters ({,a,b,s;,s,) of this plot
are identical with the parameters in Fig. 3 and R=5000.

system is two dimensional, the formalism proposed in this
paper still enables a description of some sort of this type of
junction. Those two-dimensional junctions have to be flat in
the binormal direction. Now, due to used formalism, we are
limited to description of the junctions flat in the direction of
the normal variable p. In the considered case d,¢x=0 and
d,¢x # 0, therefore Lagrangian density (24) takes the follow-
ing form:

1 1 i
L= (0,80 = S (0,807 = 5 =120 = (0, (.b)

1
- —(9,5)* = V(). 35
2G( sbK)” = Vdk) (35)
An example of this kind of kink ansatz is motivated by [8]
and has the form
¢y = 4 arctan[e*=S*P], (36)

where S(7) specifies the kink position. Now we calculate the
partial derivative of this adiabatic ansatz,

. 4 .
2 2

- sz, 37
Pk cosh’(s — S+ p) (37

and obtain the effective kinetic energy
T=2al(S)S?, (38)
where the function I(S),

(625+ eb+21)(eb+25+ 1)
(825+ eb)(eb+25+ 621) ’

I(S)=1In (39)

has the simple profile presented in Fig. 5. The function I(S)
is constant in the central part of the junction and linearly
depends on the S variable at the ends,
285+b for 0=S=5/2
I(S)=\2b for b/l2=S=1-b/2 (40)
21-25+b for [-b2=S=I.
The effective potential energy, if the radius of curvature is

much larger than the thickness of the junction (i.e., if K
> 1/a), is the following:
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FIG. 5. The function I(S) is constant almost in the whole inter-
val [0,7]. The dependence of the function /(S) on the S variable is
linear only at the ends of the junction. In the plot we have chosen
b=100 and [=1000.

+b/2 <1+_>K2(5)
U~ 6al(S) + = f f A O TS, (41)

b2 coshz(s -S+p)’

Particular example of this type of the junction consists of the
straight segments [0,s,]U[s,,], where K(s)=w(s)=0, con-
nected by the curved region [s;,s,] which has a form of a
helix with constant curvature (K=1/R) and constant torsions
(18) and (19). The potential energy of the kink in this junc-
tion has the form

3
U=~ 6al(S) + &(1 + WR)H(S), (42)

where H(S) is the following function of the adiabatic vari-
able (see Fig. 6):

2a(28 + b)S? - 6a(2S + b)
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FIG. 6. The function H(S) defines the potential barrier in the
third example. The shape of this function is generic whenever 0
<, <s,<<I. The choice of parameters (b,/,s;,s,) is identical to the
choice in Fig. 3.

(€2S+ eb+252)(eb+25+62s1)

H(S)=1n (€2S+ eb+251)(eb+25+ 6232)

(43)

If we skip unimportant constant (—12ab), then the effective
Lagrangian, in the central part of the junction (i.e., for [
—b/2=8=]), is the following:

3
L~ 4ab$® - é(l + WR)H(S) = 4abS® — AU,  (44)

where we used the simplified form of the function I(S) [Eq.
(40)]. The dynamics of the kink in this region is determined
solely by the potential barrier AU. On the other hand at the
ends the junction is straight so AU=0. In these regions the
function I(S) changes linearly [Eq. (40)], and therefore the
effective Lagrangian simplifies to the form

for 0=S5S=0b/2

2a(21-28 +b)S? — 6a(2l =25 +b) for [-b2=S=1.

If we replace the variable S by the variable g=(25+b)%?/3
(for 0=S=b/2), and variable S by the variable g=(21-28
+b)*?/3 (for [-b/2=S=]), then at both ends the Lagrang-
ian simplifies to the form

L=~ 4a[%q’2 - %(261)2/3} ) (45)

This form of Lagrangian (45) suggests the existence of
some energy barrier connected with inserting the kink into
the junction. The meaning of this barrier is clearly visible in
Fig. 7. In order to insert kink (36) into the junction initially,
we have to increase the length of the kink. This observation
also suggests the simple way of confining the kink in some
regions of the junction. According to this observation the
appropriate potential distribution can be arranged even in the

straight junction and even for the simple kink (30) if we
change the width [-b/2,b/2] along the junction (i.e., along
the s direction). In the junction deformed in this way, the
kink can be confined even in the narrow regions of the Jo-
sephson junction (see Fig. 8).

IV. REMARKS

In the present paper, we presented a formalism that allows
for the description of the motion of the kink in an arbitrarily
deformed Josephson junction. The paper is based on the col-
lective coordinate method and allows one to find an effective
Lagrangian that describes the dynamics of the adiabatic vari-
able indicating the position of the kink. In the present work,
we generalize the results of [7], which presents the junction
as a curve embedded in a plane. The generalization proposed
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FIG. 7. At the ends of the Josephson junction, the longitude d,
of the profile of the kink is shorter than in the central part of the
junction d.

by us allows for an analytical description of the Josephson
junction whose shape makes it impossible to reduce the em-
bedding of the junction to two dimensions. This nontrivial
embedding in three dimensions is a reason for the occur-
rence, in the description of the system, of the curvature and
torsion as well. We considered three examples of curved
junctions. In the first two examples we considered one-
dimensional (long Josephson junction) and quasi-one-
dimensional junctions. The effective potential in these ex-
amples and for any other flat deformations of the junction
follows from formula (32). In the first example, we recover
the results of [7]. In the second example, we showed a direct
connection between the shape of the barrier in the effective
model and the curvature K(s) of the junction. The proposed
formalism can also be used in order to describe the motion of
the kink in some sort of the two-dimensional junctions (junc-
tions flat in the binormal direction). The effective potential in

FIG. 8. The Josephson junction with changeable width. The
minimum of the potential hole is located at the position of the
central bar.
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the case of the two-dimensional junction embedded in three
dimensions is given in formula (41). In the last example, we
show a situation where the embedding in three dimensions is
nontrivial and therefore the presence of the torsion in the
effective description is inevitable. Studying this generically
two-dimensional junction embedded in three dimensions, we
also noticed the possibility of forming an arbitrary potential
even in a straight junction for a quasi-one-dimensional kink.
A simple way of preparing a junction with appropriate po-
tential is by changing the width of the junction in the normal
direction (in the direction of the p variable). If the width of
the junction changes, for example, if it grooves, then we
have to provide some energy connected with increasing the
length of the kink profile (Fig. 8). The possibility of creating
a potential hole (for example, made of two barriers) could
find future applications in electronic devices in order to store
binary data. These applications are related to the possibility
of confining the fluxons in potential holes. The process of
trapping fluxons in potential holes may be controlled by in-
troducing the external magnetic field (in order to push the
fluxon into a potential hole) and small damping to the system
(in order to decrease the Kinetic energy of the kink).

The effective description of the kink motion, proposed in
this paper, is based only on position variable. We would like
to underline that at this point we rely on the numerical test
made for the curved system described in the first example.
Extensive numerical studies made in [7] show that position
variable suffices for good description of the kink motion for
nonrelativistic speeds. We understand that the description of
the kink motion for relativistic speeds needs some modifica-
tions (in fact [9] suggests the need of some kind of the width
variable), but we consider it as a good idea for future work.

Finally, let us think about possible dependence of the kink
amplitude on curvature of the junction. We know that the
field variable ¢ measures the phase difference

d)(ta-;) = (PZ(ts)_C)) - (Pl(t’f)

of the many-particle functions that describe both supercon-
ducting electrodes

D (£.3) = [hole® D, o (2.5) = [ihp|e1 ™,

where || is a wave-function amplitude. It is assumed that in
the bulk of the superconductor this amplitude is constant and
a phase is a dominating degree of freedom. It is well-
established fact that the phase of the wave function is sensi-
tive to the topology of the space (due to requirement of the
uniqueness). On the other hand if the topology is trivial (this
is the case of the considered system), one could ask whether
the phase depends on the curvature of the superconducting
electrode. The reliable answer can be achieved in the frame-
work of the microscopic theory (BCS for conventional su-
perconductors). In this theory we can ask about possible de-
pendence of the effective many-particle function on the
curvature of the boundaries of the superconducting material.

To make things simpler let us consider a simple example,
i.e., one-dimensional quantum mechanical (QM) system. We
would like to compare a wave function defined on the sec-
tion of the straight line
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(1-d flat system) with a wave function defined on a segment
of an arc of the circle (1-d curved system). We are interested
in the form of the Laplacian in both systems as it is the only
term in the stationary Schrodinger equation that may depend
on the geometry of the system. In case of the circle we write
down the Laplacian in polar coordinates and then fix the
radial coordinate. Next we change the angle variable to

PHYSICAL REVIEW E 79, 046601 (2009)

length parameter and obtain the identical form of the Laplac-
ian as in the case of the section on the straight line. As a
result we obtain the same analytical form of the functions
parametrized by the same length parameter. This instance
suggests the lack of dependence of the phase factor on the
curvature and therefore also the lack of the dependence of
the kink amplitude on a curvature of the junction.
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